Weakly nonlinear analysis of Rayleigh–Bénard convection in shear-thinning fluids: nature of the bifurcation and pattern selection

Author:

Bouteraa M.,Nouar C.,Plaut E.,Metivier C.,Kalck A.

Abstract

AbstractA linear and weakly nonlinear analysis of convection in a layer of shear-thinning fluids between two horizontal plates heated from below is performed. The objective is to examine the effects of the nonlinear variation of the viscosity with the shear rate on the nature of the bifurcation, the planform selection problem between rolls, squares and hexagons, and the consequences on the heat transfer coefficient. Navier’s slip boundary conditions are used at the top and bottom walls. The shear-thinning behaviour of the fluid is described by the Carreau model. By considering an infinitesimal perturbation, the critical conditions, corresponding to the onset of convection, are determined. At this stage, non-Newtonian effects do not come into play. The critical Rayleigh number decreases and the critical wavenumber increases when the slip increases. For a finite-amplitude perturbation, nonlinear effects enter in the dynamic. Analysis of the saturation coefficients at cubic order in the amplitude equations shows that the nature of the bifurcation depends on the rheological properties, i.e. the fluid characteristic time and shear-thinning index. For weakly shear-thinning fluids, the bifurcation is supercritical and the heat transfer coefficient increases, as compared with the Newtonian case. When the shear-thinning character is large enough, the bifurcation is subcritical, pointing out the destabilizing effect of the nonlinearities arising from the rheological law. Departing from the onset, the weakly nonlinear analysis is carried out up to fifth order in the amplitude expansion. The flow structure, the modification of the viscosity field and the Nusselt number are characterized. The competition between rolls, squares and hexagons is investigated. Unlike Albaalbaki & Khayat (J. Fluid. Mech., vol. 668, 2011, pp. 500–550), it is shown that in the supercritical regime, only rolls are stable near onset.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3