Ageing and yield behaviour in model soft colloidal glasses

Author:

Christopoulou C.12,Petekidis G.12,Erwin B.134,Cloitre M.3,Vlassopoulos D.12

Affiliation:

1. Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, Road to Voutes, Heraklion 71110, Crete, Greece

2. Department of Materials Science and Technology, University of Crete, Heraklion 71300, Crete, Greece

3. Ecole Supérieure de Physique et Chimie Industrielles, Matière Molle et Chimie, 10 Rue de Vauquelin, Paris 75005, France

4. IBM, Hudson Valley Research Park, East Fishkill, NY 12533, USA

Abstract

We use multi-arm star polymers as model soft colloids with tuneable interactions and explore their behaviour in the glassy state. In particular, we perform a systematic rheological study with a well-defined protocol and address aspects of ageing and shear melting of star glasses. Ageing proceeds in two distinct steps: a fast step of O (10 3  s) and a slow step of O (10 4  s). We focus on creep and recovery tests, which reveal a rich, albeit complex response. Although the waiting time, the time between pre-shear (rejuvenation) of the glassy sample and measurement, affects the material’s response, it does not play the same role as in other soft glasses. For stresses below the yield value, the creep curve is divided into three regimes with increasing time: viscoplastic, intermediate steady flow (associated with the first ageing step) and long-time evolving elastic solid. This behaviour reflects the interplay between ageing and shear rejuvenation. The yield behaviour, as investigated with the stress-dependent recoverable strain, indicates a highly nonlinear elastic response intermediate between a low-stress Hookean solid and a high-stress viscoelastic liquid, and exemplifies the distinct characteristics of this class of hairy colloids. It appears that a phenomenological classification of different colloidal glasses based on yielding performance may be possible.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3