Interfacial rheology of polyelectrolyte microgel monolayers: Correlation between mechanical properties and phase behavior at oil-water interfaces

Author:

Schmidt Maximilian M.1ORCID,Laukkanen Olli-Ville12ORCID,Bochenek Steffen1ORCID,Schier W. Sebastian1ORCID,Richtering Walter1ORCID

Affiliation:

1. Institute of Physical Chemistry, RWTH Aachen University 1 , Landoltweg 2, 52074 Aachen, Germany, European Union

2. VTT Technical Research Centre of Finland Ltd 2 , Koivurannantie 1, 40400 Jyväskylä, Finland, European Union

Abstract

Microgels are confined to fluid interfaces in numerous applications, yet many aspects of the microgel-covered interface remain unclear. In this work, we use interfacial shear and dilatational rheology to study the effects of electrostatics on the mechanical characteristics of polyelectrolyte microgel monolayers at oil-water interfaces as a function of the microgel interfacial concentration. We find a clear correlation between the influence of charges on the mechanical properties of the monolayers and the influence of charges on their two-dimensional phase behavior. At lower microgel interfacial concentrations, the moduli of uncharged monolayers are larger than those of charged monolayers. Consistent with our previous findings on the phase behavior, here, the mechanical response of the interfacial layer is controlled by in-plane interactions of the microgels within the interface. At higher microgel interfacial concentrations, the moduli of charged monolayers are larger than those of uncharged monolayers. The mechanical response becomes dominated by out-of-plane interactions between the fractions of the adsorbed microgels further from the interface. Evidently, electrostatic interactions do not contribute directly to the mechanical response of the interfacial layer, that is, through charge repulsion, but indirectly through the difference in the swelling properties of uncharged and charged microgels. These results advance our understanding of how the charge-dependent microstructure of the interfacial layer affects its mechanical properties, which is not only important from a fundamental point of view but is also relevant to applications where polyelectrolyte microgels are used as responsive emulsion stabilizers.

Funder

Deutsche Forschungsgemeinschaft

Alexander von Humboldt-Stiftung

Emil Aaltosen Säätiö

Publisher

Society of Rheology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3