Structure and dynamics of low Reynolds number turbulent pipe flow

Author:

Duggleby Andrew1,Ball Kenneth S2,Schwaenen Markus1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M UniversityCollege Station, TX 77843, USA

2. Department of Mechanical Engineering, Virginia Polytechnic Institute and State UniversityBlacksburg, VA 24061, USA

Abstract

Using large-scale numerical calculations, we explore the proper orthogonal decomposition of low Reynolds number turbulent pipe flow, using both the translational invariant (Fourier) method and the method of snapshots. Each method has benefits and drawbacks, making the ‘best’ choice dependent on the purpose of the analysis. Owing to its construction, the Fourier method includes all the flow fields that are translational invariants of the simulated flow fields. Thus, the Fourier method converges to an estimate of the dimension of the chaotic attractor in less total simulation time than the method of snapshots. The converse is that for a given simulation, the method of snapshots yields a basis set that is more optimal because it does not include all of the translational invariants that were not a part of the simulation. Using the Fourier method yields smooth structures with definable subclasses based upon Fourier wavenumber pairs, and results in a new dynamical systems insight into turbulent pipe flow. These subclasses include a set of modes that propagate with a nearly constant phase speed, act together as a wave packet and transfer energy from streamwise rolls. It is these interactions that are responsible for bursting events and Reynolds stress generation. These structures and dynamics are similar to those found in turbulent channel flow. A comparison of structures and dynamics in turbulent pipe and channel flows is reported to emphasize the similarities and differences.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference26 articles.

1. Dynamical eigenfunction decomposition of turbulent channel flow

2. Streamwise vortices associated with the bursting phenomenon

3. A general classification of three‐dimensional flow fields

4. Duggleby A. & Paul M. R. 2008 Exploring extensive chaos in Rayleigh–Bénard convection using fractal and Karhunen–Loève dimensions. In XXII Int. Conf. Theoretical and Applied Mechanics .

5. The effect of spanwise wall oscillation on turbulent pipe flow structures resulting in drag reduction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3