Abstract
This work develops a data analysis procedure, namely, proper orthogonal decomposition (POD)-dynamic mode decomposition (DMD) augmented analysis, to isolate the energy- and evolution-wise dominant features of flow field in a street canyon. This combination aims to extract modes imposing critical influence on pollutant dispersion from both energetic and dynamic perspectives. The two techniques were first conducted based on large-eddy simulation results. Subsequently, based on the POD and DMD ranking, the extracted modes were classified into three types: (1) type 1: energetically and dynamically significant mode; (2) type 2: energetically significant and dynamically insignificant mode; and (3) type 3: energetically insignificant and dynamically significant mode. Results show that mode type 1 contributes to the mainstream flow and the main vortex structures, which can be observed near the stagnation point, the separating point, and the fluid reattachment area. Mode type 2 throws light on where the turbulent kinetic energy is the largest, leading to periodically sudden pollutants increase on the building roof and the wake region. Mode type 3 contributes to the long-term reversed flow structures occurring near the stagnation point, inside the street canyon, and in the wake region. This technique can provide a systematic analysis of the flow field within a street canyon, and it also provides help for potential applications at a city scale, such as solving pollutant dispersion issues in urban areas.
Funder
Research Grants Council, University Grants Committee
Natural Science Foundation of Chongqing
Key Project of Technological Innovation and Application Development in Chongqing
Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献