Turbulent flow in smooth and rough pipes

Author:

Allen J.J1,Shockling M.A2,Kunkel G.J3,Smits A.J3

Affiliation:

1. Department of Mechanical Engineering, New Mexico State UniversityLas Cruces, NM 88003, USA

2. GE Global Research1 Research Circle, Niskayuna, NY 12309, USA

3. Department of Mechanical and Aerospace Engineering, Princeton UniversityPrinceton, NJ 08540, USA

Abstract

Recent experiments at Princeton University have revealed aspects of smooth pipe flow behaviour that suggest a more complex scaling than previously noted. In particular, the pressure gradient results yield a new friction factor relationship for smooth pipes, and the velocity profiles indicate the presence of a power-law region near the wall and, for Reynolds numbers greater than about 400×10 3 ( R + >9×10 3 ), a logarithmic region further out. New experiments on a rough pipe with a honed surface finish with k rms / D =19.4×10 −6 , over a Reynolds number range of 57×10 3 –21×10 6 , show that in the transitionally rough regime this surface follows an inflectional friction factor relationship rather than the monotonic relationship given in the Moody diagram. Outer-layer scaling of the mean velocity data and streamwise turbulence intensities for the rough pipe show excellent collapse and provide strong support for Townsend's outer-layer similarity hypothesis for rough-walled flows. The streamwise rough-wall spectra also agree well with the corresponding smooth-wall data. The pipe exhibited smooth behaviour for , which supports the suggestion that the original smooth pipe was indeed hydraulically smooth for Re D ≤24×10 6 . The relationship between the velocity shift, Δ U / u τ , and the roughness Reynolds number, , has been used to generalize the form of the transition from smooth to fully rough flow for an arbitrary relative roughness k rms / D . These predictions apply for honed pipes when the separation of pipe diameter to roughness height is large, and they differ significantly from the traditional Moody curves.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3