Application of maximum statistical entropy in formulating a non-gaussian probability density function in flow uncertainty analysis with prior measurement knowledge

Author:

Ramnath VishalORCID

Abstract

In mechanical, civil and chemical engineering systems the accuracies of flow measurement instruments is conventionally specified by certified measurement capabilities (CMCs) that are symmetric, however it is physically possible for some flow instruments and equipment to exhibit asymmetric non-Gaussian behaviour. In this paper the influence of non-Gaussian uncertainties is investigated using direct Monte Carlo simulations to construct a probability density function (PDF) using representative non-Gaussian surface roughness data for a commercial steel pipe friction factor. Actual PDF results are compared and contrasted with a symmetric Gaussian PDF, and reveal inconsistencies in the statistical distributions that cannot be neglected in high accuracy flow measurements. The non-Gaussian PDF is visualized with a kernel density estimate (KDE) scheme to infer an initial qualitative shape of the actual PDF using the approximate locations of the normalized peaks as a initial metrologist estimate of the measurement density. This is then utilized as inputs in a maximum statistical entropy functional to optimize the actual non-Gaussian PDF using a nonlinear optimization of Lagrange multipliers for a mathematically unique PDE. Novelties in the present study is that a new methodology has been developed for statistical sampling from non-monotonic non-Gaussian distributions with accompanying Python and Matlab/GNU Octave computer codes, and a new methodology for utilizing metrologist's expert prior knowledge of PDF peaks and locations for constructing an a priori estimate of the shape of unknown density have been incorporated into the maximum statistical entropy nonlinear optimization problem for a faster and more efficient approach for generating statistical information and insights in constructing high accuracy non-Gaussian PDFs of real world messy engineering measurements.

Publisher

EDP Sciences

Reference74 articles.

1. BIPM, IEC, IFCC, ILAC, ISO, IUPAP, and OIML, “Evaluationof measurement data - Guide to the expression of uncertainty in measurement, ” tech. rep., JCGM/WG1 GUM, 2008. Revised 1st edition − https://www.bipm.org/en/publications/guides/https://www.bipm.org/en/publications/guides/.

2. Determining the covariance matrix for a nonlinear implicit multivariate measurement equation uncertainty analysis

3. Reversed inverse regression for the univariate linear calibration and its statistical properties derived using a new methodology

4. Variable data measurement systems analysis: advances in gage bias and linearity referencing and acceptability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3