Affiliation:
1. Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
Abstract
At equilibrium, the shape of a strongly anisotropic crystal exhibits corners when for some orientations the surface stiffness is negative. In the sharp-interface problem, the surface free energy is traditionally augmented with a curvature-dependent term in order to round the corners and regularize the dynamic equations that describe the motion of such interfaces. In this paper, we adopt a diffuse interface description and present a phase-field model for strongly anisotropic crystals that is regularized using an approximation of the Willmore energy. The Allen–Cahn equation is employed to model kinetically controlled crystal growth. Using the method of matched asymptotic expansions, it is shown that the model converges to the sharp-interface theory proposed by Herring. Then, the stress tensor is used to derive the force acting on the diffuse interface and to examine the properties of a corner at equilibrium. Finally, the coarsening dynamics of the faceting instability during growth is investigated. Phase-field simulations reveal the existence of a parabolic regime, with the mean facet length evolving in
t
, with
t
the time, as predicted by the sharp-interface theory. A specific coarsening mechanism is observed: a hill disappears as the two neighbouring valleys merge.
Funder
ANR ANPHASES
Centre National d’Études Spatiales
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献