Does Maxwell's hypothesis of air saturation near the surface of evaporating liquid hold at all spatial scales?

Author:

Benilov E.S.ORCID

Abstract

The classical model of evaporation of liquids hinges on Maxwell's assumption that the air near the liquid's surface is saturated. It allows one to find the evaporative flux without considering the interface separating liquid and air. Maxwell's hypothesis is based on an implicit assumption that the vapour-emission capacity of the interface exceeds the throughput of air (i.e. its ability to pass the vapour on to infinity). If this is indeed so, then the air adjacent to the liquid would get quickly saturated, justifying Maxwell's hypothesis. In the present paper, the so-called diffuse-interface model is used to account for the interfacial physics and thus derive a generalised version of Maxwell's boundary condition for the near-interface vapour density. It is then applied to a spherical drop floating in air. It turns out that the vapour-emission capacity of the interface exceeds the throughput of air only if the drop's radius is $r_{d}\gtrsim 10\ \mathrm {\mu } \mathrm {m}$ , but for $r_{d}\approx 2\ \mathrm {\mu } {\rm m}$ , the two are comparable. For $r_{d} \lesssim 1\ \mathrm {\mu } {\rm m}$ , evaporation is interface-driven, and the resulting evaporation rate is noticeably smaller than that predicted by the classical model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference122 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3