Granular size segregation in silos with and without inserts

Author:

Cliff A.1,Fullard L. A.2ORCID,Breard E. C. P.3,Dufek J.3,Davies C. E.1

Affiliation:

1. School of Food and Advanced Technology, Massey University, Palmerston North, Manawatu 4410, New Zealand

2. School of Fundamental Sciences, Massey University, Palmerston North, Manawatu 4410, New Zealand

3. Department of Earth Sciences, University of Oregon, Eugene, OR 97403-1272, USA

Abstract

The storage of granular materials is a critical process in industry, which has driven research into flow in silos. Varying material properties, such as particle size, can cause segregation of mixtures. This work seeks to elucidate the effects of size differences and determine how using a flow-correcting insert mitigates segregation during silo discharge. A rotating table was used to collect mustard seeds discharged from a three-dimensional (3D)-printed silo. This was loaded with bidisperse mixtures of varying proportions. A 3D-printed biconical insert was suspended near the hopper exit to assess its effect on the flow. Samples were analysed to determine the mass fractions of small particle species. The experiments without the insert resulted in patterns consistent with segregation. Introducing the insert into the silo eliminated the observed segregation during discharge. Discrete element method simulations of silo discharge were performed with and without the insert. These results mirrored the physical experiment and, when complimented with coarse graining analysis, explained the effect of the insert. Most of the segregation occurs at the grain–air free surface and is driven by large velocity gradients. In the silo with an insert, the velocity gradient at the free surface is greatly reduced, hence, so is the degree of segregation.

Funder

Royal Society of New Zealand

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3