Insights on the internal dynamics of bi-disperse granular flows from machine learning

Author:

Laudari Sudip,Marks Benjy,Rognon PierreORCID

Abstract

AbstractIn granular flows, grains exhibit heterogeneous dynamics featuring large distributions of forces and velocities. Conventional statistical methods have previously revealed how these dynamical properties scale with the grain size in monodisperse flows. We explore here whether they differ between small and large grains in bi-disperse flows. In simulated silo flows comprised of dense and collisional zones, we use a machine learning classifier to attempt to distinguish small from large grains based on features such as velocity, acceleration and force. Results show that a classification based on grain velocity is not possible, which suggests that large and small grains feature statistically similar velocities. In the dense zones, classification based on force only fails too, indicating that small and large grains are subjected to similar forces. However, classification based on force and acceleration succeeds. This indicates that the classifier is sensitive to the correlation between forces and acceleration, i.e. Newton’s second law, and can thus detect differences in grain size via their mass. These results highlight the potential for machine learning to assist with better understanding the behaviour of granular flows and similar disordered fluids.

Funder

Australian Research Council

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3