A theory of pattern formation for reaction–diffusion systems on temporal networks

Author:

Van Gorder Robert A.1ORCID

Affiliation:

1. Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand

Abstract

Networks have become ubiquitous in the modern scientific literature, with recent work directed at understanding ‘temporal networks’—those networks having structure or topology which evolves over time. One area of active interest is pattern formation from reaction–diffusion systems, which themselves evolve over temporal networks. We derive analytical conditions for the onset of diffusive spatial and spatio-temporal pattern formation on undirected temporal networks through the Turing and Benjamin–Feir mechanisms, with the resulting pattern selection process depending strongly on the evolution of both global diffusion rates and the local structure of the underlying network. Both instability criteria are then extended to the case where the reaction–diffusion system is non-autonomous, which allows us to study pattern formation from time-varying base states. The theory we present is illustrated through a variety of numerical simulations which highlight the role of the time evolution of network topology, diffusion mechanisms and non-autonomous reaction kinetics on pattern formation or suppression. A fundamental finding is that Turing and Benjamin–Feir instabilities are generically transient rather than eternal, with dynamics on temporal networks able to transition between distinct patterns or spatio-temporal states. One may exploit this feature to generate new patterns, or even suppress undesirable patterns, over a given time interval.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of clustering on Turing instability in complex networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-09-01

2. Complex Ginzburg–Landau equation for time‐varying anisotropic media;Studies in Applied Mathematics;2024-07-08

3. The hidden sensitivity of non-smooth dynamics;Physica D: Nonlinear Phenomena;2024-07

4. Delay-driven phase transitions in an epidemic model on time-varying networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-04-01

5. Global synchronization on time-varying higher-order structures;Journal of Physics: Complexity;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3