Axisymmetric bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasi-crystal circular plate

Author:

Li Yang1ORCID,Li Yuan2,Qin Qinghua3,Yang Lianzhi4,Zhang Liangliang5,Gao Yang5

Affiliation:

1. Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, People's Republic of China

2. Henan Academy of Big Data, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China

3. College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia

4. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China

5. College of Science, China Agricultural University, Beijing 100083, People's Republic of China

Abstract

Within a framework of the state space method, an axisymmetric solution for functionally graded one-dimensional hexagonal piezoelectric quasi-crystal circular plate is presented in this paper. Applying the finite Hankel transform onto the state space vector, an ordinary differential equation with constant coefficients is obtained for the circular plate provided that the free boundary terms are zero and an exponential function distribution of material properties is assumed. The ordinary differential equation is then used to obtain the stress, displacement and electric components in the physical domain of the elastic simply supported circular plate through the use of the propagator matrix method and the inverse Hankel transform. The numerical studies are carried out to show the validity of the present solution and reveal the influence of material inhomogeneity on the axisymmetric bending of the circular plate with different layers and loadings, which provides guidance for the design and manufacture of functionally graded one-dimensional hexagonal piezoelectric quasi-crystal circular plate.

Funder

Scientific Research Fund of Liaoning Provincial Education Department

China Agricultural University Education Foundation

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3