Electro-osmotic and viscous effects upon pressure to drive a droplet through a capillary

Author:

Grassia Paul1ORCID

Affiliation:

1. Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK

Abstract

A charged oil droplet advancing into a charged capillary is considered, assuming the special case in which charges are opposite and equal. The droplet is surrounded by an aqueous phase that wets the capillary wall, such that a thin film adjacent to the wall is laid down as the droplet advances. Electro-osmotic conjoining pressures contrive to make the film even thinner than in an uncharged case. The pressure drop needed to drive the droplet along is examined. The pressure drop is dominated by capillarity but contains electro-osmotic and viscous corrections. The viscous correction is shown to be remarkably insensitive to the presence of electro-osmotic effects. The electro-osmotic pressure correction is negative, reflecting work done by the electro-osmotic conjoining pressure as film is laid down. The negative electro-osmotic correction to pressure drop can far exceed the positive viscous correction. As a result, in the presence of conjoining pressures, a droplet can be driven along a capillary channel with even less pressure drop than is seen for a static uncharged droplet.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental observation of a confined bubble moving in shear-thinning fluids;Journal of Fluid Mechanics;2022-12-06

2. Electro-osmotic and viscous effects upon pressure to drive a droplet through a capillary;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3