Two-dimensional interfacial diffusion model of inhibitory synaptic receptor dynamics

Author:

Bressloff Paul C.1ORCID

Affiliation:

1. Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA

Abstract

The diffusion-trapping of protein receptors in post-synaptic regions of a neuron’s plasma membrane plays a key role in determining the strength of synaptic connections and their regulation during learning and memory. In this paper, we construct and analyse a two-dimensional interfacial diffusion model of inhibitory synaptic receptor dynamics. The model involves three major components. First, the boundary of each synapse is treated as a semi-permeable interface due to the effects of cytoskeletal structures. Second, the effective diffusivity within a synapse is taken to be smaller than the extrasynaptic diffusivity due to the temporary binding to scaffold protein buffers within the synapse. Third, receptors from intracellular pools are inserted into the membrane extrasynaptically and internalized extrasynaptically and synaptically. We first solve the model equations for a single synapse in an unbounded domain and explore how the non-equilibrium steady-state number of synaptic receptors depends on model parameters including synaptic radius and the permeability of the synaptic interface. We then use matched asymptotic analysis to solve the corresponding problem of multiple synapses in a large, bounded domain. In particular, we show how diffusion mediates pairwise synaptic interactions that could provide a substrate for heterosynaptic plasticity. Finally, we indicate how to apply the model to the stochastic dynamics of single receptors.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3