A fully coupled hybrid lattice Boltzmann and finite difference method-based study of transient electrokinetic flows

Author:

Basu Himadri Sekhar1ORCID,Bahga Supreet Singh2,Kondaraju Sasidhar1ORCID

Affiliation:

1. School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Khordha, Odisha 752050, India

2. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Abstract

Transient electrokinetic (EK) flows involve the transport of conductivity gradients developed as a result of mixing of ionic species in the fluid, which in turn is affected by the electric field applied across the channel. The presence of three different coupled equations with corresponding different time scales makes it difficult to model the problem using the lattice Boltzmann method (LBM). The present work aims to develop a hybrid LBM and finite difference method (FDM)-based model which can be used to study the electro-osmotic flows (EOFs) and the onset of EK instabilities using an Ohmic model, where fluid and conductivity transport are solved using LBM and the electric field is solved using FDM. The model developed will be used to simulate three different problems: (i) EOF with varying zeta-potential on the wall, (ii) similitude in EOF, and (iii) EK instabilities due to the presence of conductivity gradients. Problems (i) and (ii) will be compared with the analytical results and problem (iii) will be compared with the simulations of a spectral method-based numerical model. The results obtained from the present simulations will show that the developed model is capable of studying transient EK flows and of predicting the onset of instability.

Funder

Department of Science and Technology, Government of India

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3