Electrochemical transport modelling and open-source simulation of pore-scale solid–liquid systems

Author:

Barnett Robert,Municchi Federico,King John,Icardi MatteoORCID

Abstract

AbstractThe modelling of electrokinetic flows is a critical aspect spanning many industrial applications and research fields. This has introduced great demand in flexible numerical solvers to describe these flows. The underlying phenomena are microscopic, non-linear, and often involving multiple domains. Therefore often model assumptions and several numerical approximations are introduced to simplify the solution. In this work we present a multi-domain multi-species electrokinetic flow model including complex interface and bulk reactions. After a dimensional analysis and an overview of some limiting regimes, we present a set of general-purpose finite-volume solvers, based on OpenFOAM® , capable of describing an arbitrary number of electrochemical species over multiple interacting (solid or fluid) domains (Icardi and Barnett in F Municchi spnpFoam, 2021. https://doi.org/10.5281/zenodo.4973896). We provide a verification of the computational approach for several cases involving electrokinetic flows, reactions between species, and complex geometries. We first present three one-dimensional verification test-cases, and then show the capability of the solver to tackle two- and three-dimensional electrically driven flows and ionic transport in random porous structures. The purpose of this work is to lay the foundation of a general-purpose open-source flexible modelling tool for problems in electrochemistry and electrokinetics at different scales.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial UKACM 2022: advances in computational mechanics;Engineering with Computers;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3