Affiliation:
1. Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA
Abstract
In this paper, we extend our recent work on two-dimensional diffusive search-and-capture processes with multiple small targets (narrow capture problems) by considering an asymptotic expansion of the Laplace transformed probability flux into each target. The latter determines the distribution of arrival or capture times into an individual target, conditioned on the set of events that result in capture by that target. A characteristic feature of strongly localized perturbations in two dimensions is that matched asymptotics generates a series expansion in
ν
= −1/ln
ϵ
rather than
ϵ
, 0 <
ϵ
≪ 1, where
ϵ
specifies the size of each target relative to the size of the search domain. Moreover, it is possible to sum over all logarithmic terms non-perturbatively. We exploit this fact to show how a Taylor expansion in the Laplace variable
s
for fixed
ν
provides an efficient method for obtaining corresponding asymptotic expansions of the splitting probabilities and moments of the conditional first-passage-time densities. We then use our asymptotic analysis to derive new results for two major extensions of the classical narrow capture problem: optimal search strategies under stochastic resetting and the accumulation of target resources under multiple rounds of search-and-capture.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献