Theoretical estimates of the parameters of longitudinal undular bores in polymethylmethacrylate bars based on their measured initial speeds

Author:

Hooper Curtis G.12ORCID,Khusnutdinova Karima R.2ORCID,Huntley Jonathan M.1ORCID,Ruiz Pablo D.1ORCID

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK

2. Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK

Abstract

We study the evolution of the longitudinal release wave that is generated by induced tensile fracture as it propagates through solid rectangular polymethylmethacrylate (PMMA) bars of different constant cross-section. High-speed multi-point photoelasticity is used to register the strain wave at three distances from the fracture site in each experiment. In all cases, oscillations develop at the bottom of the release wave that exhibit the qualitative features of an undular bore. The pre-strain, post-strain, strain rate of the release wave and the cross-section dimensions determine the evolution of the oscillations. From the wave speed and strain rate close to the fracture site, we estimate the strain rate of the release wave as well as the growth of the amplitude and duration of the leading oscillation away from the fracture site by using formulae derived from the simple analytical solution of the linearized Gardner equation (linearized near the pre-strain level at fracture). Our estimates are then compared to experimental data, where good agreements of these three parameters are found between the predictions of the model and the experimental observations. Thus, we developed an approach to estimating the key characteristics of the developing unsteady undular bore based on the measured initial speeds of the longitudinal and shear waves. This does not require a prior knowledge of the elastic moduli for the conditions of the experiments, which in PMMA are known to be strain rate dependent.

Funder

Wolfson School of Mechanical, Electrical and Manufacturing Engineering

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3