Parameterized neural ordinary differential equations: applications to computational physics problems

Author:

Lee Kookjin12ORCID,Parish Eric J.2

Affiliation:

1. School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 South Mill Avenue, Tempe, AZ85281, USA

2. Extreme-scale Data Science and Analytics Department, Sandia National Laboratories, 7011 East Avenue, MS 9159, Livermore, CA 94550, USA

Abstract

This work proposes an extension of neural ordinary differential equations (NODEs) by introducing an additional set of ODE input parameters to NODEs. This extension allows NODEs to learn multiple dynamics specified by the input parameter instances. Our extension is inspired by the concept of parameterized ODEs, which are widely investigated in computational science and engineering contexts, where characteristics of the governing equations vary over the input parameters. We apply the proposed parameterized NODEs (PNODEs) for learning latent dynamics of complex dynamical processes that arise in computational physics, which is an essential component for enabling rapid numerical simulations for time-critical physics applications. For this, we propose an encoder–decoder-type framework, which models latent dynamics as PNODEs. We demonstrate the effectiveness of PNODEs on benchmark problems from computational physics.

Funder

Sandia's Advanced Simulation and Computing

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference82 articles.

1. Quarteroni A, Manzoni A, Negri F. 2015 Reduced basis methods for partial differential equations: an introduction, vol. 92. Berlin, Germany: Springer.

2. Karl M Soelch M Bayer J van der Smagt P. 2017 Deep variational Bayes filters: unsupervised learning of state space models from raw data. In Proc. 5th Int. Conf. on Learning Representations ICLR 2017 Toulon France 24–26 April 2017 . La Jolla CA: International Conference on Representation Learning.

3. Chen TQ Rubanova Y Bettencourt J Duvenaud D. 2018 Neural ordinary differential equations. In Proc. Advances in Neural Information Processing Systems 31: Annu. Conf. on Neural Information Processing Systems 2018 NeurIPS 2018 Montréal Canada 3–8 December 2018 (eds S Bengio HM Wallach H Larochelle K Grauman N Cesa-Bianchi R Garnett) pp. 6572–6583. Neural Information Processing Systems Foundation.

4. Morton J Jameson A Kochenderfer MJ Witherden FD. 2018 Deep dynamical modeling and control of unsteady fluid flows. In Proc. Advances in Neural Information Processing Systems 31: Annu. Conf. on Neural Information Processing Systems 2018 NeurIPS 2018 Montréal Canada 3–8 December 2018 (eds S Bengio HM Wallach H Larochelle K Grauman N Cesa-Bianchi R Garnett) pp. 9278–9288. Neural Information Processing Systems Foundation.

5. Rubanova Y Chen TQ Duvenaud D. 2019 Latent ordinary differential equations for irregularly-sampled time series. In Proc. Advances in Neural Information Processing Systems 32: Annu. Conf. on Neural Information Processing Systems 2019 NeurIPS 2019 Vancouver British Columbia Canada 8–14 December 2019 (eds HM Wallach H Larochelle A Beygelzimer Fd’Alché-Buc EB Fox R Garnett) pp. 5321–5331. Neural Information Processing Systems Foundation.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3