1. Bacsa, K., Lai, Z., Liu, W., Todd, M., Chatzi, E.: Symplectic encoders for physics-constrained variational dynamics inference. Sci. Rep. 13(1), 2643 (2023)
2. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2007)
3. Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., Gentine, P.: Enforcing analytic constraints in neural networks emulating physical systems. Phys. Rev. Lett. 126(9), 098302 (2021)
4. Bhattoo, R., Ranu, S., Krishnan, N.A.: Learning the dynamics of particle-based systems with Lagrangian graph neural networks. Mach. Learn.: Sci. Technol. 4(1), 015003 (2023)
5. Bishnoi, S., Bhattoo, R., Ranu, S., Krishnan, N.M.: Enhancing the inductive biases of graph neural ODE for modeling dynamical systems (2022). arXiv preprint arXiv:2209.10740