Inflationary routes to Gaussian curved topography

Author:

Siéfert Emmanuel1,Warner Mark2ORCID

Affiliation:

1. Laboratoire de Physique et Mécanique des Milieux Hétérogènes, CNRS UMR7636, Ecole Supérieure de Physique et Chimie Industrielles de Paris (ESPCI), Sorbonne Université, Université de Paris, 75005 Paris, France

2. Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK

Abstract

Gaussian-curved shapes are obtained by inflating initially flat systems made of two superimposed strong and light thermoplastic impregnated fabric sheets heat-sealed together along a specific network of lines. The resulting inflated structures are light and very strong because they (largely) resist deformation by the intercession of stretch. Programmed patterns of channels vary either discretely through boundaries or continuously. The former give rise to faceted structures that are in effect non-isometric origami and that cannot unfold as in conventional folded structures since they present the localized angle deficit or surplus. Continuous variation of the channel direction in the form of spirals is examined, giving rise to curved shells. We solve the inverse problem consisting in finding a network of seam lines leading to a target axisymmetric shape on inflation. They too have strength from the metric changes that have been pneumatically driven, resistance to change being met with stretch and hence high forces like typical shells.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bioinspired Morphing Mechanisms for Soft Systems: A Review;Advanced Intelligent Systems;2024-08-18

2. Fluid‐Driven Director‐Field Design Enables Versatile Deployment of Multistable Structures;Advanced Intelligent Systems;2024-05-16

3. Programming 3D Curves with Discretely Constrained Cylindrical Inflatables;Advanced Materials;2023-05-10

4. Curvature-driven instabilities in thin active shells;Royal Society Open Science;2022-10

5. Interfacial metric mechanics: stitching patterns of shape change in active sheets;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3