Curvature-driven instabilities in thin active shells

Author:

Giudici Andrea1ORCID,Biggins John S.1

Affiliation:

1. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB21PZ, UK

Abstract

Spontaneous material shape changes, such as swelling, growth or thermal expansion, can be used to trigger dramatic elastic instabilities in thin shells. These instabilities originate in geometric incompatibility between the preferred extrinsic and intrinsic curvature of the shell, which may be modified by active deformations through the thickness and in plane, respectively. Here, we solve the simplest possible model of such instabilities, which assumes the shells are shallow, thin enough to bend but not stretch, and subject to homogeneous preferred curvatures. We consider separately the cases of zero, positive and negative Gauss curvature. We identify two types of supercritical symmetry-breaking instability, in which the shell’s principal curvature spontaneously breaks discrete up/down symmetry and continuous planar isotropy. These are then augmented by inversion instabilities, in which the shell jumps subcritically between up/down broken symmetry states and rotation instabilities, in which the curvatures rotate by 90° between states of broken isotropy without release of energy. Each instability has a thickness-independent threshold value for the preferred extrinsic curvature proportional to the square root of Gauss curvature. Finally, we show that the threshold for the isotropy-breaking instability is the same for deep spherical caps, in good agreement with recently published data.

Funder

UK Research and Innovation

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

Reference51 articles.

1. Euler L. 1744 Opera omnia vol. I. Basel: Birkhäuser Cham.

2. Yoo CH, Lee S. 2011 Stability of structures: principles and applications. Amsterdam, The Netherlands: Elsevier.

3. Zoley R. 1915 Über ein Knickproblem an der Kugelschale . PhD thesis Zurich.

4. Buckling of spherical shells revisited

5. Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3