Buckling of spherical shells revisited

Author:

Hutchinson John W.ORCID

Abstract

A study is presented of the post-buckling behaviour and imperfection sensitivity of complete spherical shells subject to uniform external pressure. The study builds on and extends the major contribution to spherical shell buckling by Koiter in the 1960s. Numerical results are presented for the axisymmetric large deflection behaviour of perfect spheres followed by an extensive analysis of the role axisymmetric imperfections play in reducing the buckling pressure. Several types of middle surface imperfections are considered including dimple-shaped undulations and sinusoidal-shaped equatorial undulations. Buckling occurs either as the attainment of a maximum pressure in the axisymmetric state or as a non-axisymmetric bifurcation from the axisymmetric state. Several new findings emerge: the abrupt mode localization that occurs immediately after the onset of buckling, the existence of an apparent lower limit to the buckling pressure for realistically large imperfections, and comparable reductions of the buckling pressure for dimple and sinusoidal equatorial imperfections.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference30 articles.

1. The nonlinear buckling behavior of a complete spherical shell under uniform external pressure, Parts I, II, III & IV;Koiter WT;Proc. Kon. Ned. Ak. Wet.,1969

2. The Buckling of Spherical Shells by External Pressure

3. On the stability of elastic equilibrium. Dissertation, Delft, The Netherlands. An English translation is available in 1967;Koiter WT;Tech. Trans. F,1945

4. The rotationally-symmetric branching behavior of a complete spherical shell;Thompson JMT;Proc. Kon. Ned. Ak. Wet.,1964

5. Fabrication of slender elastic shells by the coating of curved surfaces

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3