Measurement of cytochrome oxidase and mitochondrial energetics by near–infrared spectroscopy

Author:

Cooper Chris E.1,Springett Roger1

Affiliation:

1. Department of Biological and Chemical Sciences, Central Campus, University of EssexColchester CO4 3SQUK

Abstract

Cytochrome oxidase is the terminal electron acceptor of the mitochondrial respiratory chain. It is responsible for the vast majority of oxygen consumption in the body and essential for the efficient generation of cellular ATP. The enzyme contains four redox active metal centres; one of these, the binuclear Cu A centre, has a strong absorbance in the near–infrared that enables it to be detectable in vivo by near–infrared spectroscopy. However, the fact that the concentration of this centre is less than 10 per cent of that of haemoglobin means that its detection is not a trivial matter. Unlike the case with deoxyhaemoglobin and oxyhaemoglobin, concentration changes of the total cytochrome oxidase protein occur very slowly (over days) and are therefore not easily detectable by near–infrared spectroscopy. However, the copper centre rapidly accepts and donates an electron, and can thus change its redox state quickly; this redox change is detectable by near–infrared spectroscopy. Many factors can affect the Cu A redox state in vivo (Cooper et al . 1994), but the most significant is likely to be the molecular oxygen concentration (at low oxygen tensions, electrons build up on Cu A as reduction of oxygen by the enzyme starts to limit the steady–state rate of electron transfer). The factors underlying haemoglobin oxygenation, deoxygenation and blood volume changes are, in general, well understood by the clinicians and physiologists who perform near–infrared spectroscopy measurements. In contrast the factors that control the steady–state redox level of Cu A in cytochrome oxidase are still a matter of active debate, even amongst biochemists studying the isolated enzyme and mitochondria. Coupled with the difficulties of accurate in vivo measurements it is perhaps not surprising that the field of cytochrome oxidase near–infrared spectroscopy has a somewhat chequered past. Too often papers have been written with insufficient information to enable the measurements to be repeated and few attempts have been made to test the algorithms in vivo . In recent years a number of research groups and commercial spectrometer manufacturers have made a concerted attempt to not only say how they are attempting to measure cytochrome oxidase by near–infrared spectroscopy but also to demonstrate that they are really doing so. We applaud these attempts, which in general fall into three areas: first, modelling of data can be performed to determine what problems are likely to derail cytochrome oxidase detection algorithms (Matcher et al . 1995); secondly haemoglobin concentration changes can be made by haemodilution (using saline or artificial blood substitutes) in animals (Tamura 1993) or patients (Skov and Greisen 1994); and thirdly, the cytochrome oxidase redox state can be fixed by the use of mitochondrial inhibitors and then attempts made to cause spurious cytochrome changes by dramatically varying haemoglobin oxygenation, haemoglobin concentration and light scattering (Cooper et al . 1997). We have previously written reviews covering the difficulties of measuring the cytochrome oxidase near–infrared spectroscopy signal in vivo (Cooper et al . 1997) and the factors affecting the oxidation state of cytochrome oxidase Cu A (Cooper et al . 1994). In this article we would like to strike a somewhat more optimistic note: we will stress the usefulness this measurement may have in the clinical environment, as well as describing conditions under which we can have confidence that we are measuring real changes in the Cu A redox state.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference62 articles.

1. Prognosis of newborn infants with hypoxic-ischaemic brain injury assessed by phosphorus magnetic resonance spectroscopy;Azzopardi D.;Pediatr. Res.,1989

2. Bashford C. L. Barlow C. H. Chance B. & Haselgrove J. 1980 FEBS Lett. 113 78-80.

3. Bolanos J. P. Peuchen S. Heales S. J. R. Land J. M. & Clark J. B. 1994 Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. ~. ~eurochem. 63 910-916.

4. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase

5. Cytochrome oxidase content of rat brain during development. Biochim;Brown G. C.;Bioph~s. Acta,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3