Size reduction, reproductive strategy and the life cycle of a centric diatom

Author:

Abstract

The life cycle of Aulacoseira subarctica (O. Müller) Haworth in Lough Neagh, Northern Ireland, is described. Cell numbers can reach up to 17000 per millilitre in spring. Most cells sediment to the bottom after silica limitation and go into a resting state during summer. The inoculum in autumn partly comes from resuspension, with the surviving cells (0.5-5%) continuing to grow through the winter, doubling every one to two weeks. T he population goes through a size reduction and regeneration cycle linked to sexual reproduction. Gametes are only produced in narrower cells (3.8-7.4 um diameter), usually after interruptions in growth caused by low light conditions (surface irradiance 100-150 pE m -2 s-1), but availability of nutrients, especially silica and nitrogen, is also important. Even the highest densities of auxospores (20 m1 -1) represent only a small proportion of the total cells present (0.16%). Size regeneration results in initial cells with diameters (14.8 ± 2 pm) about three times those of the parent. Larger parent cells usually give rise to larger initial cells. Subsequently, cell division leads to a decrease in population diameter, because of the way new valves are laid down below the girdle bands. Reductions are largest in broader cells (0.32 um per division) and gradually decrease as cells get narrower. Occasionally large reductions, up to 1 um, follow periods of environmental stress. By combining these results with studies of changes in cell size (width, length and volume) in related individuals along filaments, it was possible to explain why there have been difficulties in applying the MacDonald-Pfitzer hypothesis to natural populations. Theoretically, the life cycle in L. Neagh might extend over 100 divisions or 15 years but, in practice, cells reach a sexually inducible size in 4-6 years. The discrepancy is because environmental factors (e.g. sedimentation, resuspension, parasitism, etc.) are also important in size selectivity. The interaction of these factors, when combined with intermittent sexual reproduction at low frequencies, results in a relatively stable population size distribution, where there are always some cells in the size range in which sexual differentiation can be induced. Overall, the results demonstrate, that for a full understanding of diatom population dynamics, it is important to quantify events over complete life cycles.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference6 articles.

1. A m brust E.V . Chisholm S.W. & Olson R .J. 1990 Role of light and the cell cycle on the induction of sperm atogenesis in a centric diatom . J .Phycol. 26 470-478.

2. D iatom analysis of a N ewferry M onolith. A ppendix 3 in R ecent excavations at Newferry, Co. A ntrim by P. C. W oodm an;Proc. Prehist. Soc.,1977

3. Observations on the recent history of Lough Neagh and its drainage basin

4. Life cycles, life histories and recruitment

5. Die Beeinflussung der A uxosporenbildung von Melosira nummuloides Au/?enfaktoren;Berkenbusch H.;Arch. Protistenk.,1954

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3