Decoupling cell size homeostasis in diatoms from the geometrical constraints of the silica cell wall

Author:

de Haan Diede1ORCID,Ramos Nahuel‐Hernán1ORCID,Meng Yu‐Feng1ORCID,Rotkopf Ron2ORCID,Addadi Yoseph2ORCID,Rosenhek‐Goldian Irit3ORCID,Gal Assaf1ORCID

Affiliation:

1. Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot 7610001 Israel

2. Life Sciences Core Facilities Weizmann Institute of Science Rehovot 7610001 Israel

3. Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel

Abstract

Summary Unicellular organisms are known to exert tight control over their cell size. In the case of diatoms, abundant eukaryotic microalgae, two opposing notions are widely accepted. On the one hand, the rigid silica cell wall that forms inside the parental cell is thought to enforce geometrical reduction of the cell size. On the other hand, numerous exceptions cast doubt on the generality of this model. Here, we monitored clonal cultures of the diatom Stephanopyxis turris for up to 2 yr, recording the sizes of thousands of cells, in order to follow the distribution of cell sizes in the population. Our results show that S. turris cultures above a certain size threshold undergo a gradual size reduction, in accordance with the postulated geometrical driving force. However, once the cell size reaches a lower threshold, it fluctuates around a constant size using the inherent elasticity of cell wall elements. These results reconcile the disparate observations on cell size regulation in diatoms by showing two distinct behaviors, reduction and homeostasis. The geometrical size reduction is the dominant driving force for large cells, but smaller cells have the flexibility to re‐adjust the size of their new cell walls.

Funder

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3