Pitch related to spectral edges of broadband signals

Author:

Abstract

A complex tone often evokes a pitch sensation associated with its extreme spectral components, besides the holistic pitch associated with its fundamental frequency. We studied the edge pitch created at the upper spectral edge of complexes with a low-pass spectrum by asking subjects to adjust the frequency of a sinusoidal comparison tone to the perceived pitch. Measurements were performed for different values of the fundamental frequency and of the upper frequency of the complex as well as for three different phase relations of the harmonic components. For a wide range of these parameters the subjects could adjust the comparison tone with a high accuracy, measured as the standard deviation of repeated adjustments, to a frequency close to the nominal edge frequency. The detailed dependence of the matching accuracy on temporal parameters of the harmonic complexes suggests that the perception of the edge pitch in harmonic signals is related to the temporal resolution of the hearing system. This resolution depends primarily on the time constants of basilar-membrane filters and on additional limitations due to neuronal processes.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference31 articles.

1. Bekesy G.v. 1960 Experiments in hearing. New York: McGraw-Hill.

2. Hearing theories and complex sounds. J. acoust;Bekesy G.v.;Soc. Am.,1963

3. Audibility of high harmonics in a periodic pulse. J. acoust;Duifhuis H.;Soc. Am.,1970

4. Uber Tonhohenempfindungen bei Rauschen;Fasti H.;Acustica,1971

5. Fasti H. 1980 Pitch strength and masking patterns of lowpass noise. In Psychophysical physiological and behavioral studies in hearing (ed. G. v.d. Brink & F. Bilsen) pp. 334-339. Delft University Press.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3