The use of flat-ended projectiles for determining dynamic yield stress - II. Tests on various metallic materials

Author:

Abstract

A description is given of the experimental technique devised to apply the method outlined theoretically in part I to the measurement of the dynamic compressive yield strength of various steels, duralumin, copper, lead, iron and silver. A polished piece of armour steel was employed as a target, and cylindrical specimens were fired at it at various measured velocities from Service weapons. The distance between the weapon and target was made short to ensure normal impact, and apparatus was devised for the precise measurement of striking velocity over this short range. The dynamic compressive yield strength was computed from the density of the specimen, the striking velocity, and from measurements of the dimensions of the test piece before and after test. Details are given of the accuracy of the various measurements, and of their effect on the values of yield strength. The method was found to be inaccurate at low and high velocities. For instance, with mild steel, satisfactory results were only obtainable within the range 400 to 2500 ft. /sec. The range of velocities within which satisfactory results could be obtained varied with the quality of the material tested, soft metals giving results within a much lower range than that necessary for harder materials. Because of its failure at low velocities, the method could not be employed to bridge the gap between static and dynamic tests. The rate of strain employed in the dynamic tests could not be measured, but was estimated to be of the order of 10,000 in. /in. /sec. With the materials tested little change of dynamic strength occurred within the range of striking velocities employed, probably because the rate of strain did not vary to any great extent with the striking velocity. Within the range of weapons available, that is, from a 0·303 in. rifle up to a 13 pdr. gun (calibre 3·12 in.), little change of dynamic strength occurred with alteration of the initial dimensions of the specimens, probably because the corresponding change of rate of strain was not large. In general, the dynamic compressive yield strength S was greater than the static strength Y represented by the compressive stress giving 0·2% permanent strain. For steels of various types, regardless of chemical composition and heat treatment, there was a relation between S / Y and the static strength Y , the ratio decreasing from approximately 3 when Y was 20 tons/sq. in. to 1 when Y was 120 tons/sq. in. A similar relation occurred with duralumin, S / Y varying from 2·5 at Y = 8 tons/sq. in. to 1·4 at Y = 25 tons/sq. in. Dynamic compressive yield values were obtained for soft materials such as pure lead, copper and Armco iron, which, under static conditions, gave no definite yield values. A plot of the unstrained length of the specimen X , expressed as X / L (where L = initial overall length), versus the final overall length L 1 , expressed as L 1 / L , was made for the various materials. Any specified value of X / L was associated with greater values of L 1 / L for the more ductile materials, such as copper and lead, than for the brittle materials, such as armour plate and duralumin.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact force measurement by in-plane piezoelectricity of polyvinylidene fluoride films;International Journal of Mechanical Sciences;2024-12

2. High-Rate Characterization of L-PBF AlSi10Mg under Impact Conditions;Journal of Dynamic Behavior of Materials;2024-08-01

3. Bridging the gap between rate-dependent plasticity and stress wave dynamics: Calibrating a constitutive model for high-strength steel by inverse optimization;International Journal of Impact Engineering;2024-08

4. The Taylor impact experiment;Dynamic Behavior of Materials;2024

5. ESTIMATION OF DYNAMIC YIELD STRESS BY TAYLOR TEST WITH REDUCED CYLINDRICAL HEAD PART OF SAMPLES;Челябинский физико-математический журнал;2023-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3