ESTIMATION OF DYNAMIC YIELD STRESS BY TAYLOR TEST WITH REDUCED CYLINDRICAL HEAD PART OF SAMPLES

Author:

Rodionov E.S.1,Mayer A.E.1

Affiliation:

1. Chelyabinsk State University

Abstract

A simple method is proposed to estimate the dynamic yield stress of materials using modified Taylor tests for high-velocity impact of profiled cylinders with a reduced diameter of the head part. Assuming the uniformity of deformations and stresses in the head part, formulas are derived for estimating the yield stress and strain rate from the change in the length of the reduced head part, as well as the mass of the sample and the impact velocity. This estimation is verified by comparison with the results of numerical calculations by the SPH method based on the dislocation plasticity model parameterized for cold-rolled oxygen-free copper. It is shown that the stopping time of the sample and the strain rate are reproduced with good accuracy, and the shear strength estimate gives an error that increases with the impact velocity. At velocities that do not lead to deformation of a wide part of the sample (up to 90 m/s in the case under consideration), the error increases linearly up to 30%, which can be taken into account by a correction factor. The proposed estimate, taking into account the correction factor, was applied to analyze the results of previous experiments; the obtained values correspond to the literature data on the rate dependence of the shear strength.

Funder

Russian Science Foundation

Publisher

Chelyabinsk State University

Subject

General Physics and Astronomy,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3