An X-ray study of horse methaemoglobin. I

Author:

Abstract

The paper describes a detailed study of horse methaemoglobin by single crystal X-ray diffraction methods. The results give information on the arrangement of the molecules in the crystal, their shape and dimensions, and certain features of their internal structure. Horse methaemoglobin crystallizes in the monoclinic space group C 2 with two molecules of weight 66, 700 per unit cell. In addition, the wet crystals contain liquid of crystallization which fills 52.4% of the unit cell volume. Deliberate variations in the amount and com­position of the liquid of crystallization, and the study of the effects of such variations on the X-ray diffraction pattern, form the basis of the entire analysis. The composition of the liquid of crystallization can be varied by allowing heavy ions to diffuse into the crystals. This increases the scattering contribution of the liquid relative to that of the protein molecules and renders it possible to distinguish the one from the other. The method is analogous to that of isomorphous replacement commonly used in X-ray analysis. It yielded valuable information on the shape and character of the haemoglobin molecules and also led to the determination of the phase angles of certain reflexions. The amount of liquid of crystallization was varied by swelling and shrinkage of the crystals. This involves stepwise, reversible transitions between different well-defined lattices, each being stable in a particular environment of the crystal. The lattice changes were utilized in two different ways: the first involved comparison of Patters on projections at different stages of swelling and shrinkage, and the second an attempt to trace the molecular scattering curve as a function of the diffraction angle. The results of the analysis can be summarized as follows. The methaemoglobin molecules resemble cylinders of an average height of 34 A and a diameter of 57 A. In the crystal these cylinders form close-packed layers which alternate with layers of liquid of crystallization. The layers of haemoglobin molecules themselves do not swell or shrink, either in thickness or in area, except on complete drying, and lattice changes merely involve a shearing of the haemoglobin layers relative to each other, combined with changes in the thickness of the liquid layer. Thus the molecules do not seem to be penetrated by the liquid of crystallization, and their structure is unaffected by swelling and shrinkage of the crystal. Space-group symmetry requires that each molecule consists of two chemically and struc­turally identical halves. Evidence concerning the internal structure of the molecules comes both from two-dimensional Patterson projections and one-dimensional Fourier projections. The former indicate that interatomic vectors of 9 to 11 A occur frequently in many directions, and the latter show four prominent concentrations of scattering matter just under 9 A apart along a line normal to the layers of haemoglobin molecules. No structural interpretation of these features is as yet attempted. The liquid of crystallization consists of two distinct components: water ‘bound’ to the protein and not available as solvent to diffusing ions, and ‘free’ water in dynamic equilibrium with the suspension medium. An estimate of the ‘frictional ratio’ based on the molecular shape and hydration found in this analysis is in good agreement with the frictional ratio calculated from the sedimentation constant.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference11 articles.

1. Anson M. L. & Northrop J. H. 1937 J .

2. Astbury W. T. 1940

3. J;Astbury W. T.;Chem. Soc. p. 337. Gen.Physiol.,1942

4. J .Soc. Leath. Tr. Chem. 24 69.

5. An improved numerical method of two-dimensional fourier synthesis for crystals

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3