Variation in defence strategies in the metal hyperaccumulator plant Noccaea caerulescens is indicative of synergies and trade-offs between forms of defence

Author:

Fones Helen N.1ORCID,Preston Gail M.2ORCID,Smith J. Andrew C.ORCID

Affiliation:

1. Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK

2. Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK

Abstract

In the metal hyperaccumulator plant Noccaea caerulescens, zinc may provide a defence against pathogens. However, zinc accumulation is a variable trait in this species. We hypothesize that this variability affects the outcome of interactions between metal accumulation and the various constitutive and inducible defences that N. caerulescens shares with non-accumulator plants. We compare zinc concentrations, glucosinolate concentrations and inducible stress responses, including reactive oxygen species (ROS) and cell death, in four N. caerulescens populations, and relate these to the growth of the plant pathogen Pseudomonas syringae , its zinc tolerance mutants and Pseudomonas pathogens isolated from a natural population of N. caerulescens. The populations display strikingly different combinations of defences. Where defences are successful, pathogens are limited primarily by metals, cell death or organic defences; there is evidence of population-dependent trade-offs or synergies between these. In addition, we find evidence that Pseudomonas pathogens have the capacity to overcome any of these defences, indicating that the arms race continues. These data indicate that defensive enhancement, joint effects and trade-offs between different forms of defence are all plausible explanations for the variation we observe between populations, with factors including metal availability and metal-tolerant pathogen load probably shaping the response of each population to infection.

Funder

Natural Environment Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

Reference69 articles.

1. Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry;Baker AJM;Biorecov.,1989

2. Molecular mechanisms of metal hyperaccumulation in plants

3. Metal Hyperaccumulation in Plants

4. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction

5. A fern that hyperaccumulates arsenic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3