Sequential removal of cation/H+ exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance

Author:

Mathew Iny Elizebeth1,Rhein Hormat Shadgou1,Yang Jian1,Gradogna Antonella2ORCID,Carpaneto Armando23ORCID,Guo Qi4ORCID,Tappero Ryan5,Scholz‐Starke Joachim2ORCID,Barkla Bronwyn J.4ORCID,Hirschi Kendal D.1ORCID,Punshon Tracy6

Affiliation:

1. Pediatrics‐Nutrition, Children's Nutrition Research Baylor College of Medicine Houston Texas USA

2. Institute of Biophysics Consiglio Nazionale delle Ricerche Genova Italy

3. Department of Earth, Environment and Life Sciences (DISTAV) University of Genoa Genova Italy

4. Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia

5. Brookhaven National Laboratory Photon Sciences Department Upton New York USA

6. Department of Biological Sciences Dartmouth College Hanover New Hampshire USA

Abstract

AbstractMultiple Arabidopsis H+/Cation exchangers (CAXs) participate in high‐capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1‐4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast‐localised H+/Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP‐MS) and synchrotron X‐ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP‐MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild‐type plants grown in Ca‐limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+/Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3