Can fish species co-occurrence patterns be predicted by their trait dissimilarities?

Author:

Cordero Ruben D.1ORCID,Jackson Donald A.1ORCID

Affiliation:

1. Ecology and Evolutionary Biology, University of Toronto Faculty of Arts & Science¸ Toronto, Ontario Canada, M5S 3G3

Abstract

Trait-based analyses have been successful in determining and predicting species association outcomes in diverse communities. Most studies have limited the scope of this approach to the biotic responses of a small number of species or geographical regions. We focused on determining whether three biologically relevant traits (body size, temperature preference and trophic level) influence the patterns of co-occurrence between multiple species. We used fish species presence/absence from 9 204 lakes in Ontario, Canada, to obtain effect sizes of 2001 species-pair co-occurrence values, using a null model approach. Euclidean distances between each species-pair were calculated for each of the three traits selected. Multiple regression models and randomization tests were used to determine the direction and significance of the relationship of each trait with the observed co-occurrence values. The results show that species temperature preference was significantly related to co-occurrence patterns, indicating the effect of environmental filtering. Trophic level was significantly related to co-occurrence values for both linear and quadratic terms, suggesting that segregation between species is driven by large differences in this trait (predation effects). Unexpectedly, body size was not significantly related to the observed co-occurrence patterns. We provide a new approach to test relationships between species assemblages and trait conditions.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3