Dynamical methods for target control of biological networks

Author:

Parmer Thomas1,Radicchi Filippo1ORCID

Affiliation:

1. Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47408, USA

Abstract

Estimating the influence that individual nodes have on one another in a Boolean network is essential to predict and control the system’s dynamical behaviour, for example, detecting key therapeutic targets to control pathways in models of biological signalling and regulation. Exact estimation is generally not possible due to the fact that the number of configurations that must be considered grows exponentially with the system size. However, approximate, scalable methods exist in the literature. These methods can be divided into two main classes: (i) graph-theoretic methods that rely on representations of Boolean dynamics into static graphs and (ii) mean-field approaches that describe average trajectories of the system but neglect dynamical correlations. Here, we compare systematically the performance of these state-of-the-art methods on a large collection of real-world gene regulatory networks. We find comparable performance across methods. All methods underestimate the ground truth, with mean-field approaches having a better recall but a worse precision than graph-theoretic methods. Computationally speaking, graph-theoretic methods are faster than mean-field ones in sparse networks, but are slower in dense networks. The preference of which method to use, therefore, depends on a network’s connectivity and the relative importance of recall versus precision for the specific application at hand.

Funder

Army Research Office

Air Force Office of Scientific Research

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3