The gender-specific impact of starvation on mitotypes diversity in adults of Drosophila melanogaster

Author:

Wang Tao1ORCID,Li Tian-Chu1,Miao Yun-Heng1,Wu Luo-Nan1,Chen Yu-Qiao1,Huang Da-Wei1,Xiao Jin-Hua1ORCID

Affiliation:

1. College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China

Abstract

In animals, starvation can increase the level of reactive oxygen species (ROS) in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being attacked by ROS due to the lack of histone protection, leading to oxidative damage. However, whether starvation is associated with the genetic diversity of mtDNA remains unclear. Here, by using adult individuals of Drosophila melanogaster under three different feeding treatments (starvation, with the provision of only water, and normal feeding), based on the high-throughput sequencing results of the PCR amplicons of the partial sequences of the mitochondrial gene cytochrome c oxidase subunit I ( mt-cox1 ), no significant difference in the mean number of mitochondrial haplotypes and the mean genetic distance of haplotypes within individuals were identified between the three treatment groups. Coupled with the low proportion of heterogeneous mt-cox1 sequences within each individual, it suggested that starvation had a limited impact on mitotype genetic diversity and mitochondrial function. Nevertheless, starvation could significantly increase the sequence number of haplotypes containing specific mutations, and for males with higher levels of mitochondrial heteroplasmy than females in the normal feeding group, starvation could further increase their mitochondrial heteroplasmy.

Funder

“Fundamental Research Funds for the Central Universities”, Nankai University

National Natural Science Foundation of China

Tianjin Research Innovation Project for Postgraduate Students

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3