Author:
Ocampo-Hafalla Maria,Muñoz Sofía,Samora Catarina P.,Uhlmann Frank
Abstract
The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2–Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the
GAL2
and
MET17
loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription.
Funder
The Francis Crick Institute
Cordis
Cancer Research UK
Subject
General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献