Affiliation:
1. Chair for Biological Imaging and Institute for Biological and Medical Imaging (IBMI), Technische Universität München and Helmholtz Zentrum München, Munich, Germany
Abstract
Macroscopic optical imaging has rather humble technical origins; it has been mostly implemented by photographic means using appropriate filters, a light source and a camera yielding images of tissues. This approach relates to human vision and perception, and is simple to implement and use. Therefore, it has found wide acceptance, especially in recording fluorescence and bioluminescence signals. Yet, the difficulty in resolving depth and the dependence of the light intensity recorded on tissue optical properties may compromise the accuracy of the approach. Recently, optical technology has seen significant advances that bring a new performance level in optical investigations. Quantitative real-time multi-spectral optical and optoacoustic (photoacoustic) methods enable high-resolution quantitative imaging of tissue and disease biomarkers and can significantly enhance medical vision in diagnostic or interventional procedures such as dermatology, endoscopy, surgery, and various vascular and intravascular imaging applications. This performance is showcased herein and examples are given to illustrate how it is possible to shift the paradigm of optical clinical translation.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献