Bioinspired water collection methods to supplement water supply

Author:

Bhushan Bharat1ORCID

Affiliation:

1. Nanoprobe Laboratory for Bio and Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA

Abstract

Fresh water sustains human life and is vital for human health. Water scarcity affects more than 40% of the global population and is projected to rise. For some of the poorest countries, 1 in 10 people do not have access to safe and easily accessible water sources. Water consumption by man continues to grow with increasing population. Furthermore, population growth and unsafe industrial practices, as well as climate change, have put strain on ‘clean' water supply in many parts of the world, including the Americas. Current supply of fresh water needs to be supplemented to meet future needs. Living nature provides many lessons for water source. It has evolved species, which can survive in the most arid regions of the world by water collection from fog and condensation in the night. Before the collected water evaporates, species have mechanisms to transport water for storage or consumption. These species possess unique chemistry and structures on or within the body for collection and transport of water. In this paper, an overview of arid desert conditions and water collection from fog, and lessons from living nature for water collection are provided. Data on various bioinspired surfaces for water collection are also presented. Some bioinspired water purification approaches are presented. Next, consumer to military and emergency applications are discussed and water collection projections are presented. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference72 articles.

1. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil

2. Anonymous. 2015 ‘Water Uses ’ Food and Agricultural Organization of the United Nations seehttp://www.fao.org/nr/water/aquastat/water_use .

3. Anonymous. 2009 Charting Our Water Future: Economic Frameworks to Inform Decision-making see http://www.2030wrg.org/wp-content/uploads/2014/07/Charting-Our-Water-Future-Final.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3