Application Of Biomimetic Strategies In Building Envelope Design For Water Harvesting

Author:

Cenk Zeynep Kamile1ORCID,Mutlu Avinç Güneş2ORCID,Arslan Selçuk Semra1ORCID

Affiliation:

1. GAZI UNIVERSITY, FACULTY OF ARCHITECTURE, DEPARTMENT OF ARCHITECTURE

2. MUS ALPARSLAN UNIVERSITY, FACULTY OF ENGINEERING-ARCHITECTURE

Abstract

Nature is a database that offers potential solutions to humanity’s many problems with its countless living species and their developed adaptations. As in engineering, medicine, agriculture, etc., innovative approaches are sought in the discipline of architecture with the solution proposals offered by nature. Designers looking for creative solutions, especially in producing the most effective constructions with the most materials, providing energy efficiency in built environments, designing ecologically and harvesting water and developing methods that imitate and learn from nature. One of the main actors in the global agenda on climate change and the clean water problem is built environments. In this context, water harvesting methods to be developed through architectural design also emerge as one of the current research topics. In this paper, research has been conducted on how the water harvesting knowledge in nature can be integrated into architecture; A biomimetic shell proposal has been developed to provide atmospheric water gain. Firstly, the concept of biomimetics is clarified through a literature review and examples of water balance strategies of living things in nature are presented. Then, architectural examples inspired by these strategies are analyzed. The selected living organisms were analyzed in the field study section and a design concept that can harvest water on the building facade was developed based on the biological information obtained. Inspired by the water harvesting principles of cactus and Bromeliaceae plants, this design is presented as an alternative for water harvesting with different usage possibilities in built environments.

Publisher

Gazi University Journal of Science

Reference62 articles.

1. [1] Brown, P.S., Bhushan, B. “Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil”, Philosophical Transactions of the Royal Society A, 374, 20160135, (2016). DOI: https://doi.org/10.1098/rsta.2016.0135

2. [2] World Economic Forum, “Global Risks 2015, 10th Edition, Geneva”, Switzerland, Adress: https://www3.weforum.org/docs/WEF_Global_Risks_2015_Report15.pdf (2015).

3. [3] World Water, Water Scarcity Clock. Adress: https://worldwater.io/ (2024). Access date: 09.01.2024.

4. [4] https://www.sdg6data.org/en/indicator/6.1.1 Access date: 10.01.2024.

5. [5] Bhushan B. “Bioinspired water collection methods to supplement water supply”, Philosophical Transactions of the Royal Society A, 377, (2019). DOI: https://doi.org/10.1098/rsta.2019.0119

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3