The regression Tsetlin machine: a novel approach to interpretable nonlinear regression

Author:

Darshana Abeyrathna K.1,Granmo Ole-Christoffer1ORCID,Zhang Xuan1,Jiao Lei1,Goodwin Morten1

Affiliation:

1. Centre for Artificial Intelligence Research, University of Agder, Grimstad, Norway

Abstract

Relying simply on bitwise operators, the recently introduced Tsetlin machine (TM) has provided competitive pattern classification accuracy in several benchmarks, including text understanding. In this paper, we introduce the regression Tsetlin machine (RTM), a new class of TMs designed for continuous input and output, targeting nonlinear regression problems. In all brevity, we convert continuous input into a binary representation based on thresholding, and transform the propositional formula formed by the TM into an aggregated continuous output. Our empirical comparison of the RTM with state-of-the-art regression techniques reveals either superior or on par performance on five datasets. This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super-Tsetlin: Superconducting Tsetlin Machines;IEEE Transactions on Applied Superconductivity;2024-05

2. Esophageal cancer detection framework based on time series information from smear images;Expert Systems with Applications;2024-03

3. Precision Medicine for Student Health: Insights from Tsetlin Machines into Chronic Pain and Psychological Distress;Communications in Computer and Information Science;2024

4. Short-term Energy Forecasting using the Regression Tsetlin Machine;Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing;2023-12-04

5. Contracting Tsetlin Machine with Absorbing Automata;2023 International Symposium on the Tsetlin Machine (ISTM);2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3