Affiliation:
1. University of Kent, Canterbury, UK
Abstract
The vast majority of the literature evaluates the performance of classification models using only the criterion of predictive accuracy. This paper reviews the case for considering also the comprehensibility (interpretability) of classification models, and discusses the interpretability of five types of classification models, namely decision trees, classification rules, decision tables, nearest neighbors and Bayesian network classifiers. We discuss both interpretability issues which are specific to each of those model types and more generic interpretability issues, namely the drawbacks of using model size as the only criterion to evaluate the comprehensibility of a model, and the use of monotonicity constraints to improve the comprehensibility and acceptance of classification models by users.
Publisher
Association for Computing Machinery (ACM)
Cited by
397 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献