An energy efficient time-mode digit classification neural network implementation

Author:

Akgun O. C.1ORCID,Mei J.2

Affiliation:

1. Section Bioelectronics, Department of Microelectronics, Delft University of Technology, The Netherlands

2. Department of Neurology and Department of Experimental Neurology, Charité - Universitätsmedizin, Berlin, Germany

Abstract

This paper presents the design of an ultra-low energy neural network that uses time-mode signal processing). Handwritten digit classification using a single-layer artificial neural network (ANN) with a Softmin-based activation function is described as an implementation example. To realize time-mode operation, the presented design makes use of monostable multivibrator-based multiplying analogue-to-time converters, fixed-width pulse generators and basic digital gates. The time-mode digit classification ANN was designed in a standard CMOS 0.18 μm IC process and operates from a supply voltage of 0.6 V. The system operates on the MNIST database of handwritten digits with quantized neuron weights and has a classification accuracy of 88%, which is typical for single-layer ANNs, while dissipating 65.74 pJ per classification with a speed of 2.37 k classifications per second. This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’.

Funder

European Union's Horizon 2020 research and innovation programme

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural optimization machine: a neural network approach for optimization and its application in additive manufacturing with physics-guided learning;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-09-25

2. Time-Domain Multiply–Accumulate Unit;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2023-06

3. FPGA acceleration on a multi-layer perceptron neural network for digit recognition;The Journal of Supercomputing;2021-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3