Reducing food losses by intelligent food logistics

Author:

Jedermann Reiner1ORCID,Nicometo Mike2,Uysal Ismail3,Lang Walter145

Affiliation:

1. Institute for Microsensors, Actuators and Systems (IMSAS), University of Bremen, Bremen, Germany

2. EmpowerTech Inc., Iron Mountain, MI, USA

3. Department of Electrical Engineering, University of South Florida, Tampa, FL, USA

4. Microsystems Center Bremen (MCB), Bremen, Germany

5. Bremen Research Cluster for Dynamics in Logistics (LogDynamics), Bremen, Germany

Abstract

The need to feed an ever-increasing world population makes it obligatory to reduce the millions of tons of avoidable perishable waste along the food supply chain. A considerable share of these losses is caused by non-optimal cold chain processes and management. This Theme Issue focuses on technologies, models and applications to monitor changes in the product shelf life, defined as the time remaining until the quality of a food product drops below an acceptance limit, and to plan successive chain processes and logistics accordingly to uncover and prevent invisible or latent losses in product quality, especially following the first-expired-first-out strategy for optimized matching between the remaining shelf life and the expected transport duration. This introductory article summarizes the key findings of this Theme Issue, which brings together research study results from around the world to promote intelligent food logistics. The articles include three case studies on the cold chain for berries, bananas and meat and an overview of different post-harvest treatments. Further contributions focus on the required technical solutions, such as the wireless sensor and communication system for remote quality supervision, gas sensors to detect ethylene as an indicator of unwanted ripening and volatile components to indicate mould infections. The final section of this introduction discusses how improvements in food quality can be targeted by strategic changes in the food chain.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3