New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systems

Author:

Sapsis Themistoklis P.ORCID

Abstract

We discuss extreme events as random occurrences of strongly transient dynamics that lead to nonlinear energy transfers within a chaotic attractor. These transient events are the result of finite-time instabilities and therefore are inherently connected with both statistical and dynamical properties of the system. We consider two classes of problems related to extreme events and nonlinear energy transfers, namely (i) the derivation of precursors for the short-term prediction of extreme events, and (ii) the efficient sampling of random realizations for the fastest convergence of the probability density function in the tail region. We summarize recent methods on these problems that rely on the simultaneous consideration of the statistical and dynamical characteristics of the system. This is achieved by combining available data, in the form of second-order statistics, with dynamical equations that provide information for the transient events that lead to extreme responses. We present these methods through two high-dimensional, prototype systems that exhibit strongly chaotic dynamics and extreme responses due to transient instabilities, the Kolmogorov flow and unidirectional nonlinear water waves. This article is part of the theme issue ‘Nonlinear energy transfer in dynamical and acoustical systems’.

Funder

ONR

ARO

AFOSR

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Instability of the optimal edge trajectory in the Blasius boundary layer;Journal of Fluid Mechanics;2023-09-22

2. Large Deviation Theory-based Adaptive Importance Sampling for Rare Events in High Dimensions;SIAM/ASA Journal on Uncertainty Quantification;2023-07-11

3. Reduced-Order Modeling with Time-Dependent Bases for PDEs with Stochastic Boundary Conditions;SIAM/ASA Journal on Uncertainty Quantification;2023-07-10

4. Extreme rotational events in a forced-damped nonlinear pendulum;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-06-01

5. Extreme events in a complex network: Interplay between degree distribution and repulsive interaction;Chaos: An Interdisciplinary Journal of Nonlinear Science;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3