Instability of the optimal edge trajectory in the Blasius boundary layer

Author:

Beneitez MiguelORCID,Duguet YohannORCID,Schlatter PhilippORCID,Henningson Dan S.ORCID

Abstract

In the context of linear stability analysis, considering unsteady base flows is notoriously difficult. A generalisation of modal linear stability analysis, allowing for arbitrarily unsteady base flows over a finite time, is therefore required. The recently developed optimally time-dependent (OTD) modes form a projection basis for the tangent space. They capture the leading amplification directions in state space under the constraint that they form an orthonormal basis at all times. The present numerical study illustrates the possibility to describe a complex flow case using the leading OTD modes. The flow under investigation is an unsteady case of the Blasius boundary layer, featuring streamwise streaks of finite length and relevant to bypass transition. It corresponds to the state space trajectory initiated by the minimal seed; such a trajectory is unsteady, free from any spatial symmetry and shadows the laminar–turbulent separatrix for a finite time only. The finite-time instability of this unsteady base flow is investigated using the 8 leading OTD modes. The analysis includes the computation of finite-time Lyapunov exponents as well as instantaneous eigenvalues, and of the associated flow structures. The reconstructed instantaneous eigenmodes are all of outer type. They map unambiguously the spatial regions of largest instantaneous growth. Other flow structures, previously reported as secondary, are identified with this method as relevant to streak switching and to streamwise vortical ejections. The dynamics inside the tangent space features both modal and non-modal amplification. Non-normality within the reduced tangent subspace, quantified by the instantaneous numerical abscissa, emerges only as the unsteadiness of the base flow is reduced.

Funder

Vetenskapsrådet

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3