Influence of boric acid additive size on green lubricant performance

Author:

Lovell Michael R.12,Kabir M. A.23,Menezes Pradeep L.12,Higgs C. Fred3

Affiliation:

1. Department of Industrial Engineering, University of Wisconsin Milwaukee, Milwaukee, WI 53211, USA

2. Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

3. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

As the industrial community moves towards green manufacturing processes, there is an increased demand for multi-functional, environmentally friendly lubricants with enhanced tribological performance. In the present investigation, green (environmentally benign) lubricant combinations were prepared by homogeneously mixing nano- (20 nm), sub-micrometre- (600 nm average size) and micrometre-scale (4 μm average size) boric acid powder additives with canola oil in a vortex generator. As a basis for comparison, lubricants of base canola oil and canola oil mixed with MoS 2 powder (ranging from 0.5 to 10 μm) were also prepared. Friction and wear experiments were carried out on the prepared lubricants using a pin-on-disc apparatus under ambient conditions. Based on the experiments, the nanoscale (20 nm) particle boric acid additive lubricants significantly outperformed all of the other lubricants with respect to frictional and wear performance. In fact, the nanoscale boric acid powder-based lubricants exhibited a wear rate more than an order of magnitude lower than the MoS 2 and larger sized boric acid additive-based lubricants. It was also discovered that the oil mixed with a combination of sub-micrometre- and micrometre-scale boric acid powder additives exhibited better friction and wear performance than the canola oil mixed with sub-micrometre- or micrometre-scale boric acid additives alone.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference62 articles.

1. In situ solid lubricant deposition for environmentally benign forming;Barton T.;Proc. STLE Annual Meeting, Toronto, Canada,2004

2. Lubricants and the environment

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3