Tribological Properties of h-BN, Ag and MgO Nanostructures as Lubricant Additives in Vegetable Oils

Author:

Granja Victoria1ORCID,Jogesh Kollol2,Taha-Tijerina Jaime3ORCID,Higgs C. Fred1

Affiliation:

1. Particle Flow and Tribology Laboratory, Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA

2. Department of Mechanical Engineering, The University of Texas Rio Grande Valley, 1201 W. University Drive, Edinburg, TX 78539, USA

3. Department of Informatics and Engineering Systems, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

Abstract

There exists an ever-growing need for sustainable engineering solutions to improve emission control and the energy efficiency of tribosystems. This study examines the tribological properties of two environmentally friendly vegetable fluids, soybean and sunflower oil, with the addition of three non-toxic nanostructures (h-BN, silver and MgO) at different concentrations. It was found that nanostructures added to vegetable oils at specific concentrations can exhibit good friction reduction and wear preventive properties. The addition of h-BN nanosheets in sunflower oil decreased the coefficient of friction and the wear damage, as measured by the wear scar diameter. Silver and magnesium oxide nanoparticles further reduced the friction and wear, respectively. In addition to the tribological testing of the samples, investigations were performed using an optical microscope, SEM and EDX to elucidate the mechanisms that may have led to the observed friction reduction and wear-preventive properties of different nanostructure additives. The thermophysical properties of the samples were also measured. It was found that the thermal conductivity of both base oils could be enhanced by 24% when using h-BN at 0.25 wt% concentration.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3