Biocatalytic recycling of polyethylene terephthalate plastic

Author:

Zimmermann Wolfgang1ORCID

Affiliation:

1. Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany

Abstract

The global production of plastics made from non-renewable fossil feedstocks has grown more than 20-fold since 1964. While more than eight billion tons of plastics have been produced until today, only a small fraction is currently collected for recycling and large amounts of plastic waste are ending up in landfills and in the oceans. Pollution caused by accumulating plastic waste in the environment has become worldwide a serious problem. Synthetic polyesters such as polyethylene terephthalate (PET) have widespread use in food packaging materials, beverage bottles, coatings and fibres. Recently, it has been shown that post-consumer PET can be hydrolysed by microbial enzymes at mild reaction conditions in aqueous media. In a circular plastics economy, the resulting monomers can be recovered and re-used to manufacture PET products or other chemicals without depleting fossil feedstocks and damaging the environment. The enzymatic degradation of post-consumer plastics thereby represents an innovative, environmentally benign and sustainable alternative to conventional recycling processes. By the construction of powerful biocatalysts employing protein engineering techniques, a biocatalytic recycling of PET can be further developed towards industrial applications. This article is part of a discussion meeting issue ‘Science to enable the circular economy’.

Funder

Horizon 2020 Framework Programme

Bundesministerium für Bildung und Forschung

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3