Relativity and the periodic table

Author:

Pyper N. C.1

Affiliation:

1. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

Abstract

The periodic table provides a deep unifying principle for understanding chemical behaviour by relating the properties of different elements. For those belonging to the fifth and earlier rows, the observations concerning these properties and their interrelationships acquired a sound theoretical basis by the understanding of electronic behaviour provided by non-relativistic quantum mechanics. However, for elements of high nuclear charge, such as occur in the sixth and higher rows of the periodic table, the systematic behaviour explained by non-relativistic quantum mechanics begins to fail. These problems are resolved by realizing that relativistic quantum mechanics is required in heavy elements where electrons velocities can reach significant fractions of the velocity of light. An essentially non-mathematical description of relativistic quantum mechanics explains how relativity modifies valence electron behaviour in heavy elements. The direct relativistic effect, arising from the relativistic increase of the electron mass with velocity, contracts orbitals of low angular momentum, increasing their binding energies. The indirect relativistic effect causes valence orbitals of high angular momentum to be more effectively screened as a result of the relativistic contraction of the core orbitals. In the alkali and alkaline earths, the s orbital contractions reverse the chemical trends on descending these groups, with heavy elements becoming less reactive. For valence d and f electrons, the indirect relativistic effect enhances the reductions in their binding energies on descending the periodic table. The d electrons in the heavier coinage metals thus become more chemically active, which causes these elements to exhibit higher oxidation states. The indirect effect on d orbitals causes the chemistries of the sixth-row transition elements to differ significantly from the very similar behaviours of the fourth and fifth-row transition series. The relativistic destabilization of f orbitals causes lanthanides to be chemically similar, forming mainly ionic compounds in oxidation state three, while allowing the earlier actinides to show a richer range of chemical behaviour with several higher oxidation states. For the 7p series of elements, relativity divides the non-relativistic p shell of three degenerate orbitals into one of much lower energy with the energies of the remaining two being substantially increased. These orbitals have angular shapes and spin distributions so different from those of the non-relativistic ones that the ability of the 7p elements to form covalent bonds is greatly inhibited. This article is part of the theme issue ‘Mendeleev and the periodic table’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3